Iterative Manifold Embedding Layer Learned by Incomplete Data for Large-scale Image Retrieval

نویسندگان

  • Jian Xu
  • Chunheng Wang
  • Cheng-Zuo Qi
  • Cunzhao Shi
  • Baihua Xiao
چکیده

Existing manifold learning methods are not appropriate for image retrieval task, because most of them are unable to process query image and they have much additional computational cost especially for large scale database. Therefore, we propose the iterative manifold embedding (IME) layer, of which the weights are learned off-line by unsupervised strategy, to explore the intrinsic manifolds by incomplete data. On the large scale database that contains 27000 images, IME layer is more than 120 times faster than other manifold learning methods to embed the original representations at query time. We embed the original descriptors of database images which lie on manifold in a high dimensional space into manifold-based representations iteratively to generate the IME representations in off-line learning stage. According to the original descriptors and the IME representations of database images, we estimate the weights of IME layer by ridge regression. In on-line retrieval stage, we employ the IME layer to map the original representation of query image with ignorable time cost (2 milliseconds per image). We experiment on five public standard datasets for image retrieval. The proposed IME layer significantly outperforms related dimension reduction methods and manifold learning methods. Without post-processing, Our IME layer achieves a boost in performance of state-of-the-art image retrieval methods with postprocessing on most datasets, and needs less computational cost. Code is available at https://github.com/XJhaoren/IME layer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steganography Scheme Based on Reed-Muller Code with Improving Payload and Ability to Retrieval of Destroyed Data for Digital Images

In this paper, a new steganography scheme with high embedding payload and good visual quality is presented. Before embedding process, secret information is encoded as block using Reed-Muller error correction code. After data encoding and embedding into the low-order bits of host image, modulus function is used to increase visual quality of stego image. Since the proposed method is able to embed...

متن کامل

Binary Codes Embedding for Fast Image Tagging with Incomplete Labels

Tags have been popularly utilized for better annotating, organizing and searching for desirable images. Image tagging is the problem of automatically assigning tags to images. One major challenge for image tagging is that the existing/training labels associated with image examples might be incomplete and noisy. Valuable prior work has focused on improving the accuracy of the assigned tags, but ...

متن کامل

GRAM: A framework for geodesic registration on anatomical manifolds

Medical image registration is a challenging problem, especially when there is large anatomical variation in the anatomies. Geodesic registration methods have been proposed to solve the large deformation registration problem. However, analytically defined geodesic paths may not coincide with biologically plausible paths of registration, since the manifold of diffeomorphisms is immensely broader ...

متن کامل

Connected Component Based Word Spotting on Persian Handwritten image documents

Word spotting is to make searchable unindexed image documents by locating word/words in a doc-ument image, given a query word. This problem is challenging, mainly due to the large numberof word classes with very small inter-class and substantial intra-class distances. In this paper, asegmentation-based word spotting method is presented for multi-writer Persian handwritten doc-...

متن کامل

Generalization in Metric Learning: Should the Embedding Layer be the Embedding Layer?

Many recent works advancing deep learning tend to focus on large scale setting with the goal of more effective training and better fitting. This goal might be less applicable to the case of small to medium scale. Studying deep metric learning under such setting, we reason that better generalization could be a big contributing factor to improvement of previous works, as well as the goal for furt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1707.09862  شماره 

صفحات  -

تاریخ انتشار 2017